
J O U R N A L  O F  M A T E R I A L S  S C I E N C E  15 ( 1 9 8 0 )  3 0 9 - 3 2 6  

Surface dislocation model of a dislocation in a 
two-phase medium 
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The surface dislocation method developed earlier for solving the free surface boundary 
problem is now extended to the two-phase interface boundary problem wherein a lattice 
dislocation is situated in one of the phases. The interface is planar where two semi-infinite 
half spaces of different elastic properties are joined. The interface consists of four surface 
arrays of dislocations, two in each phase, so that the continuity of two stress components 
and two displacement components is maintained. The continuous distribution of 
dislocations is employed to arrive at the distribution function representing the surface 
arrays. The Airy stress functions for the two phases are derived and shown to give the 
same result as that obtained earlier by other methods. The distortions involved across the 
interface are represented in terms of simple surface arrays to show the advantage of the 
surface dislocation model. The stress field around the dislocation in the two-phase 
medium is plotted and the effect of the shear modulus of the second phase and of 
Poisson's ratio discussed. The advantages of applying the surface dislocation model either 
by the continuous distribution method or the discrete dislocation method are indicated. 

1. I n t r oduc t i on  
The elastic properties of a dislocation in an infinite 
homogeneous medium can be obtained by solving 
the elasticity equations with suitable boundary 
conditions placed on the stresses and displace- 
ment [1]. While this method is easily applicable 
for simple straight configurations of dislocations, 
the analysis becomes tedious for most complex 
configurations of dislocations. The Green's func- 
tion method has been used to solve the problem of 
curved dislocations [2]. The Green's functions of 
elasticity are the tensor quantities for the elastic 
displacements produced due to a point force. 
These satisfy the elasticity equations for the point 
force applied on the body. When a dislocation is 
created in the presence of a point force, there is no 
cross term in the elastic energy between the stress 
field of the dislocation and the stress field due to 
the point force, and since the dislocation is not a 
sink of energy, the entire energy expended in 
creating the dislocation configuration is equated to 
the work done by the point forces. This equality 
leads to the familiar displacement equations of 

0022-2461/80/020309-18503.80/0 

Burgers [3]. It is therefore imperative that the 
Green's functions of the displacements are avail- 
able and therefore the elasticity equations are 
already solved in a form suitable for further use in 
summing over the cut surfaces required to produce 
the dislocation. When the dislocation is situated in 
a finite medium or a two-phase medium, additional 
boundary conditions appear. There are various 
methods used for deriving the elasticity prop- 
erties of dislocations in these particular cases 
required to satisfy the boundary conditions. 

In the Green's function method extended to 
two-phase geometry, the elasticity equations are 
solved for the two-phase medium to obtain the 
Green's function satisfying the boundary con- 
dition [4, 5]. These Green's functions are then 
used to arrive at the stresses and displacements due 
to a dislocation in a two-phase medium. In order 
to satisfy the boundary conditions across the 
interface, namely the continuity of stresses and 
displacements, a suitable combination of point 
forces is chosen and the stresses and displacements 
are obtained by integration over the cut surfaces 
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[6]. In the image dislocation model [ 7 -9 ] ,  suitable 
image dislocations are chosen in the two phases in 
order to satisfy the continuity of stresses and dis- 
placements. However, in this case, there are no 
general rules which specify the choice of the 
Burgers vectors of the image dislocations required 
to satisfy the boundary conditions. Thus, the 
Green's function method is more general and 
applicable to various geometries, although the 
mathematics involved may become tedious. A 
more powerful and straightforward technique 
which has hitherto been applied to a limited 
extent is the surface dislocation model used to 
satisfy the boundary conditions [10]. In this 
method dislocation arrays with suitable orienta- 
tions of Burgers vectors are chosen across the 
interface in the two media to satisfy the boundary 
conditions. The simplicity of  this method enables 
it to be applied to complex geometries, though not 
in an analytical form, but replaced by numerical 
and computational methods. Since the surface 
dislocation array chosen is real, it explains the 
geometrical connection between the two phases 
that constitute the system. This method can be 
applied not only to internal stresses inside the 
medium but also to externally applied stresses. 
Since, a dislocation is an elastic entity whose 
elastic properties are derived in a homogeneous 
medium by solving the elasticity equations, the 
surface dislocation model in effect superimposes 
the dislocation arrays so as to satisfy the boundary 
conditions, and thus it is based on the same 
principle as the Green's function method, although 
the latter involves, as a first step, solving the 
elasticity equations for the two-phase medium. The 
surface dislocation model avoids the tedious 
mathematics involved in solving elasticity equa- 
tions for the two-phase medium. 

It should also be pointed out that, hitherto, dis- 
locations in two-phase media are treated assuming 
that the two phases are made of continua. Thus, 
the structure of the interface is not clearly speci- 
fied. However, when the two phases with different 
lattice parameters are joined together, the struc- 
ture of the interface consists of interface disloca- 
tions and misfit dislocations. The interface dis- 
locations have a Burgers vector which is equal to 
the lattice parameter difference of the two phases. 
The misfit dislocations are situated periodically 
within the phase with smaller lattice parameter 
and their presence decreases the stress field around 
the interface array and thus makes it short range. 
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Figure 1 Interface dislocation array and misfit dislocation 
array shown at the interface of a two-phase system. The 
extra half plane of the dislocations in the misfit array is 
situated in phase 1 with smaller lattice parameter. The 
extra half plane of the interface array is situated in phase 
2 with larger lattice parameter. These two arrays are 
opposite in sign. 

Fig. 1 shows the arrangement of the interface dis- 
locations and misfit dislocations before rearrange- 
ment of the interface array under the attractive 
force of the misfit array, the mutual repulsive 
force of the interface dislocations and the fric- 
tional stress acting along the interface. The result- 
ing arrangement leads to a partially coherent 
interface [11]. When an extraneous dislocation is 
now introduced into any one of the two phases, 
the surface dislocation model can be used to 
satisfy the internal surface boundary conditions. 
These surface dislocations, which will be intro- 
duced shortly to satisfy the continuity of stresses 
and displacements, are in addition to the already 
existing interface and misfit dislocation arrays. 
The interface dislocation arrays are defined so as 
to accommodate the lattice difference between the 
two phases, while the surface dislocation arrays are 
used to maintain the continuity conditions across 
the interface. In further analysis below, the inter- 
face dislocations and misfit dislocations are not 
considered, but the surface dislocation distribu- 
tions required to satisfy the continuity conditions 
across the interface are determined. 

2. Surface dislocation models 
The surface dislocation model has a wide range of 
applications and it is one of the methods that can 
be used to satisfy the boundary conditions in 
problems of elasticity. This method can be used 
when both external and internal stresses are 
present [10, 12]. In the following, a two-phase 
medium with phases possessing different elastic 
properties will be considered to be joined across a 
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Figure 2 The two elastic half spaces with 
different elastic properties shown before 
joining together to form the two-phase 
system. The right-hand half space contains 
a dislocation with the surface array. The 
left-hand half space contains a surface 
array which brings the stress and dis- 
placement field to a level equal to that on 
the surface of the right-hand side. 

planar interface. One of  the two phases will 
contain a dislocation. The surface arrays in the 
two phases required to satisfy the continuity of  
stresses and displacements across the interface will 
be obtained and the stresses and displacements due 
to the arrays evaluated. 

Consider, as shown in Fig. 2, two elastic half 
spaces with different elastic properties, which are 
separated from each other. The right-hand side 
consists o f  phase 1 with a screw dislocation of  
Burgers vector b s along the z direction situated at 
(c, 0) from the surface. The surface array' of  screw 
dislocations placed on the surface brings the 
stresses on the surface to a value which depends on 
the y coordinate. The left-hand side consists of  
phase 2 with a surface array of  screw dislocations 
which brings the stresses and displacements or 
displacement gradient in the y direction to the 
same value as that on the surface of  the right-hand 
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Figure 3 Surface dislocation model required to satisfy the 
continuity of the axe component of stress and the U z 
component of displacement across the interface. The 
lattice dislocation is situated in phase l at (c, 0). Each 
surface array belong s to the phase in which it is present. 

side half space. Therefore the two half spaces are 
separate although the stresses and displacements 
are made to coincide on the surface. When the two 
half spaces are now joined, the two-phase medium 
containing the dislocation in phase 1 forms the 
surface dislocation model, as shown in Fig. 3. In 
Fig. 3, the array to the right of  the interface 
belongs to phase 1 completely, and that to the left 
to phase 2 completely. The elastic properties of  
each of  these surface arrays are obtained by con- 
sidering them to be situated in an infinite medium 
of  the phase in which they are present. The inter- 
face arrays discussed earlier are different from the 
surface array in the sense that the interface array 
introduced distortion in both the phases, but the 
surface array in each phase has a distortion only in 
that phase. The continuous distribution of  these 
two surface arrays is determined by using the 
continuity of  the a=z component o f  stress and the 
Uz component o f  displacement. 

Fig. 4 shows an edge dislocation of  Burgers 
vector b s perpendicular to the interface and 
situated at (c, 0) in phase 1. The formation of  the 
two-phase system containing an edge dislocation 
can be visualized in the same way as that of  a 
screw dislocation. In order to satisfy the con- 
tinuity of  two stress components Oxx and Crxy and 
the two displacement components U x and Uy, two 
dislocation arrays of  the same character as the 
lattice dislocation, but with Burgers vector b,q, are 
placed in the two phases and two more with 
Burgers vec to r  bvi  , parallel to the interface, are 
placed in the two phases. Thus, there are two 
arrays in each phase and four arrays in both the 
phases combined which are needed to satisfy the 
continuity of  stresses and of  displacements. It 
should be noted from Fig. 4 that one o f  the arrays 
changes its sign along the y axis while the other 
has the same sign in the positive and negative y 
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Figure 4 Surface dislocation model 
required to satisfy the continuity of the 
Oxx and Oxr components of stress and the 
U x and U:~ components of displacement. 
Two arrays are requited in each phase, one 
with Burgers vector parallel to the inter- 
face and the other with Burgers vector 
perpendicular to the interface. The lattice 
dislocation is situated in phase 1 at (c, 0) 
with Burgers vector perpendicular to the 
interface. 

axis. The exact nature of these dislocation arrays 
will become evident from their corresponding dis- 
tribution functions. Fig. 5 shows an edge disloca- 
tion whose Burgers vector bs is parallel to the 
interface and situated at (c, 0) in phase 1. The 
surface arrays required to satisfy the continuity of 
stresses and displacements are also shown. It is 
seen that there are two arrays in each phase, with 
one of the arrays of the same sign along the y axis 
and the second array which changes it sign along 
the y axis. 

Thus, the elastic field in a body comprising two 
different isotropic elastic media, meeting at an 
interface and one of them, namely phase 1, con- 
taining a dislocation, is obtained in this paper. The 

elastic field in phase 1 extending to infinity 
beyond the interface is the sum of the elastic field 
of the dislocation and that of the two distributions 
of virtual infinitesimal dislocations at the interface 
in phase 1. The elastic field in phase 2 extending 
to infinity beyond the interface is the elastic field 
of the two distributions of virtual infinitesimal 
dislocations at the interface in phase 2. The 
requirement of equality of displacements and 
certain stress components at the interfaces, 
enabling the virtual extensions of the two media to 
be cut away, and the real parts of the media to be 
joined at the interface, gives enough equations to 
determine the dislocation densities in the four 
virtual arrays. In the case of a planar interface, 
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Figure 5 Same as Fig. 4 except that the 
lattice dislocation has the Burgers vector 
parallel to the interface. 



extending to infinity, these equations are solved. 
In other cases, where closed form solutions are not 
obtained, the continuous arrays of infinitesimal 
virtual dislocations may be replaced by a finite 
number of discrete virtual dislocations, but no 
results of this are presented here. In all the figures 
illustrated in the paper, the discrete dislocations 
are used to symbolize the continuous arrays of 
infinitesimal dislocations. In the following, the 
three orientations of Burgers vector of the disloca- 
tion in phase 1 are considered and the elastic fields 
determined in both phases. 

3. A screw dislocation in a two-phase 
medium 

The continuity conditions for a screw dislocation 
in a two-phase medium, as shown in Fig. 3, can be 
written in terms of the distribution functions of 
the two arrays present along the interface. The 
stress field of the screw dislocation of Burgers 
vector bs in an infinite homogeneous medium with 
shear modulus Gx can be written as 

Glbs Y 
27r y2 + (X -- C) 2 " 

Glb s (x --e)  
( l y  z - -  2rr ( x - - c )  a + ya " 

The U, component of  displacement of the disloca- 
tion is 

bs 
Uz = ~ tan -1 

These expressions can also be used with suitable 
modifications for the dislocations in the two 
surface arrays. Let the distribution function 
representing the array in phase 1 be flQvl) and 
that in phase 2 be f2(Y~). The continuity o f%z  
across the interface can be written in the form 

Glbi ;~176 (y 1 ) dY 1 Gxbs Y 
2rr - - ~ - 7 - - ' ~ 1  + 27r y a + c  a 

a~btIc~176 f~ (Y ~ ) dY, 
2n ~-oo y----~1 ' - - ~ < Y < ~  

(1) 

The continuity of  the U. component of  displace- 
ment or the gradient of  Uz with y across the inter- 
face can be written as 

b i f l ( y l )  + b i fa (y l )  _ b s c c ~ +y~ (2) 

Inversion of the integral Equation 1 gives 

G , b t f ~ ( Y ~ )  -- G 2 b i f 2 ( y l )  - 
Glb s c 

~r ca + y~ 
(3) 

Equations 2 and 3 can be solved to obtain 

b~(a~--a , )  c 
f1(Y) = ~i ~ ~ ~  ca +.yz (4) 

2bs G 1 c 
fa(Y) - biTr Ga + C, c a +y2  (5) 

The stress field due to the array corresponding to 
the distribution function f~ (y) is given by integrat- 
ing the stress field of the dislocation in the array 
over the distribution, which gives, 

O'XZ 1 ~-  

2rr + (x + c) 2 + ya , x > 0 

Similarly, the stress field due to the array cor- 
responding to the distribution function fz(Y) is 
given by 

O-XZ 2 -~- 

Glbs 2G2 y 
x < 0  

2rr Ga + G~ ( x - - c )  2 + y 2 ,  

In phase 1, the sum of the stress field of the lattice 
screw dislocation with Burgers vector b s and the 
stress field due to the array, oxz, gives 

O x z  = 

2 7 [ y  2 + ( x - c )  2 \aa +c, y 
y ] 

+ (x + cy  

x > 0 (6) 

The stress field in phase 2 is due to the array given 
by f2 (Y), 

OXZ 

x < O  

(7) 
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The displacement Uz in both the media are simi- 
larly given by 

bs I Uz =- ~ tan -1 

+ \G2 + Gll tan-I Y , x > 0 

Uz = 2rr G2 + G~ tan-~ , x < O  

(8) 

It is useful to determine the total Burgers vector of 
dislocations placed across the interface in both 
phases. Summing the distribution functions in the 
y direction gives 

- ) 
~G2 + GI bs 

~_oobif2(y)dy = 1G~)bs 

(9) 

It is verified from Equations 6, 7 and 8 that the 
continuity of stresses and displacements is satisfied 
and these results agree with those obtained from 
the image dislocation model [9]. 

4. An edge dislocation in a two-phase 
medium 

4.1. Edge dislocation with Burgers vector 
perpendicular to the interface 

The continuity of stresses and displacements 
across the interface when the edge dislocation with 
Burgers vector perpendicular to the interface is 
considered, as shown in Fig. 4, can be written in 
terms of the four distribution functions. Let fl (y) 
and f2 (v) be the dislocation distribution functions 
representing the surface arrays whose Burgers 
vectors, by i are parallel to the interface and situated 
in phase 1 and phase 2 respectively. Similarly, let 
f3@) and f4(Y) be the dislocation distribution 
functions representing the surface array whose 
Burgers vector, bxi are perpendicular to the inter- 
face and situated in phase 1 and phase 2 respect- 
ively. Across the interface, the o~y component due 
to surface arrays, given by f3(Y) and fa(Y) is zero. 
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Similarly, the axx component due to surface 
arrays fl(Y) and f2(Y) is zero. Therefore, the 
continuity of the a=, component can be written 
using the stress field expressions in an infinite 
homogeneous medium [13] and thus takes the 
form, 

a,b,, %b, a 
~'(k 1 'JV 1) -~- Y~Y-[ w(k, + 1 ) J - ~ y - - y ,  

n(g~ + 1) [c 2 +y~ (c 2 +y2)21 

where kl = 3--4vi  and k2 = 3--4v2. Inversion 
of the above equation gives 

GIA(yx) G2f2(yl) 2Gabs c2y 
(kx + 1) (k2 + 1) lr(k, + 1)by i (c 2 +y2)2 

(lO) 
Similarly, the continuity of the axx component 
can be written in the form, 

G_lbxi_ ~"~ G2bxi ~fa(Yl)dy, 
7r(k, + 1)J-• y - -y1  7r(~ 7 1 )  0-2 Y ~ 7  

_ Glbs [ Y 

Inverting the above equation, 

a~f3(y~) a 2 f 4 ( Y ~ )  

2c2y ] 
+ @2 + y2)2 

2Glbs C3 
(kl + 1) (k2 + 1) ~(kl  + 1)b~i(c 2 +y2)2 

(11) 

The continuity of the Uy component of displace- 
ment or the gradient of Uy in the y direction is 
written as 

(k, -- 1)bxi l.~f3 (y,)  dy 1 byifl(Yl)~- byif2(Yl) -~g 7 ~  "]'J-" W--Yl 

(k2 -- 1)bx i j ~  fa(Yl) dYl 

= b__~[(kl--1] y 4c2y ] 
(k, + 1)(d + y~): 

(12) 



Similarly, the continuity of the Ux component of 
displacement or the gradient of U x in the y 
direction is written as 

(kl - 1)by i ~+ (1 (71) dy, 
bxif3(Yx) + bxif4(Yl) 4 rr(k, + 1) " -=  Y --Yl 

(k_~2 ~ ])byi~'~'f2(Yl) dy I 

rr(k+ + 1) "-+ Y--Yt 

] 
= 7 t\k-77S)  --7 y + +y y 

(13) 

Equations 10 to 13 can be solved to arrive at the 
dislocation distributions. The distribution func- 
tions can be assumed to be 

c2y  
G/I(y) = A,c~y~ +el(c~ +y~)~ 

equation, A and B are written in terms of the 
elastic constants of the two phases; namely, A = 
(GI -G2)/(GI + G2k~) andB = (Glk2 --G2k~)/ 
(G~k2 +G2). The stress field and the displace- 
ment field around the dislocation in the two-phase 
medium can be obtained by evaluating the Airy 
stress function in the two media separately. The 
Airy stress function, X (1) in medium 1 is a result of 
summing the Airy stress functions of the two 
arrays in medium 1 over their respective distribu- 
tions and adding to the Airy stress function of the 
lattice dislocation. Therefore, 

Glbs [ 
XU) - rr(kx + 1) 27 in rl 

+ f l y - - y i )  In [x e +(y-yi)2]f3(Yi)dyi 

-x  I'_in=[x2 +(y-yi)'lf,(yi)dyi] x > O  

Evaluation of the integrals provides 

byif2(Y) = A2c2 Yy-----~ + B2 
c2y 

(c 2 + y2)2 
G1 bs [ 

XO)= zr(kl + 1) 2rl sin 0x logrl 

C C 3 

bxifa(Y) = A3c~+ y2 + B3ic2 +y2)2 

c c 3 

bx l f4 (Y )  = A4c'~-~+ y2  + B 4 ( c 2  +y2)2 (14) 

Using Equations 10 to 13 to evaluate the constants 
provides 

A1 = Aa = (B--A)bs 
2rr ' 

--(B + A)r2 sin Oz logr2 --(B --A)r202 cos 02 

(16) 

Similarly the Airy stress function in phase 2 is 

X (2) _ G2bs x 
zr(k2 + 1) 

2Ab s 
B1 = - -B3  -- l'f 

(B- -A)  G1 (k2 + 1) 
A2 = A4  - bs, 

27r G2(k~ + 1) 

2(1 --A) Gx(k2 + I) 
B2 = - - B 4 -  b s (15) 

7r G2(k l  + 1) 

Therefore the dislocation distribution functions 
are completely defined. It is clear from Equation 
14 that the array with Burgers vector parallel to 
the interface is an odd function of y ,  while the 
array with Burgers vector perpendicular to the 
interface is an even function of  y.  In the above 

0 0  

f_=(v --yi)  In [x 2 + (y --yi)2]f4(Yi)dyi + 

x f 2 1 n  [x 2 + (y--yi)2]~(yi)dyil 

Gibs 
~r(xl + 1) 

[ ( 2 - - A - - B ) r l  sin 01 log rl + 

(B --A) {r101 cos 01 + 2c01 }], x < 0 
(17) 

where 

r+ = (x--c)+ + y 2, r+ = (x + e)2 + y 2, 
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and 

01 = tan -l Y 
X--C 

02 = tan-1 Y 
x -b- c 

Using these Airy stress functions, the stress field 
and the displacement field around the dislocation 
in the two phases can be obtained. It is also verified 
that these results agree with those obtained by the 
Green's function technique [6] and the image 
dislocation method [7, 8]. The complete expres- 
sions for stresses and displacements are lengthy 
and therefore will not be included here. 

4.2. Edge dislocation with Burgers vector 
parallel to the interface 

The continuity of stresses and displacements 
across the interface when the edge dislocation with 
Burgers vector parallel to the interface is con- 
sidered, as shown in Fig. 5, can be written in terms 
of the four dislocation distributions. Let fl (Y) and 
f2(Y) be the dislocation distribution functions 
representing the surface array whose Burgers 
vectors, bxi , are perpendicular to the interface and 
situated in phases 1 and 2 respectively. Similarly, 
let fa(Y) and f4(y) be the dislocation distribution 
functions representing the surface array whose 
Burgers vectors, by i are parallel to the interface 
and situated in phases 1 and 2 respectively. Across 
the interface, the Ox~ component due to the 
surface arrays given by fl(Y) and f2(Y) is zero. 
Similarly, the a,:x component due to surface 
arrays f3(Y) and /~(y) is zero. Therefore, the 
continuity of the oxx component can be written in 
the form, 

Glbx i ~f_l(Yl)dyl a2bx i ~ f2(yl)dyl 
7r(kl q- i f  -~176 Y--Yl zr(k2 + I f  -~ Y--Yl 

G l b s [ c  2c 3 ] 

7r(kl + 1) c 2 + 9  (c 2 +y2)2 

Inverting the above equation, 

Glbxik(Yl) G2f2(yl)bx i 
(kl + 1) (k2 + 1) 

2G 1 bs c2y 

rr(k, + 1) (c 2 + y2)2 (18) 
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Similarly, the continuity of the axs component 
can be put into the form, 

a l b v  i ;~fas _G2b" 4" f4(vl) dyl 
+ Y --Yl 

_ Glbs 1) [ Y 2cay ] 
~.(k 1 q_ 02 +y2 (C2-'~y2)2] 

Inverting the above equation 

G,byifa(Yl) C2byif4(Yl) _ 

(k, + 1) (k2 + 1) 

2Gl b~ cy 2 
~r(kl + 1) (c 2 +y2)2 (19) 

The continuity of the Ux component of displace- 
ment or the gradient of Ux withy provides 

rr(kt + 1) J_o~ y - -y1  

zr(k2 + 1) J- Y--Yl 

bs [ (kl  -- 1) y 
= -~- [(-~-1 + 1) c 2 +y2 

4c2y J 
4 (kl + 1)(c ~ +y2)~ 

(20) 

Similarly, continuity of the U r component of 
displacement or the gradient of U r with y provides 

+ + (k ,  - , ( y , ) d y ,  

7r(kl + 1) -~ y - Y l  

(k2 7 l)bx_i i ~ f2 021) d_Y 1 
~r(k2 + 1) o_~ y _y~ 

bs [(k, -1)  e 4ey 2 ] 
- ~ [ (kl  + l ) c  2 + y =  ~(k ,  + I)(c = +y=)= 

(21) 

Equations 18 to 21 can be solved to arrive at the 
dislocation distributions. The distribution func- 
tions can be assumed to be 

y c2y 
bxif,(y ) = A - -  + lc2 + y2 B1-(c2 q_y2)2 



c2•y2 cZY 
b , iA(y)  = A~ + B2{c2 + y2)2 X (2) = Glbs 

+ 1) 
[(2 --A - -B)q  cos 01log rl - 

c cy 2 
byif3(Y) = A 3 ~ +  B3ic 2 + y : ) 2  

c cy 2 
b,if4(y ) = A 4 ~ y 2  + B4(c2 +y252 

(22) 

Using Equations 18 to 21 to evaluate the constants 
provides 

A1 = A3 - (B~--/)bs,  

2A 
B~ = B3 - bs 

7r 

= A4 - (B- -A)  G~(k2 + Obs, A2 
2zr G2 (ka + 1) 

B2 = B4 - 2(1 - -A)Gt(k2  + 1) 
7 c (k, +i3 bs 

(23) 

where the constants A and B are defined as 
explained earlier. Therefore, the dislocation dis- 
tributions are completely defined. It is seen from 
Equations 22 that the distribution functions fl(Y) 
and fz(Y) are odd functions of y ,  and hence 
change their sign along the y axis, while f3 (Y) and 
f4(Y) are even functions of y. The Airy stress 
functions for the two phases can be written after 
evaluating the Airy stress functions due to the 
surface arrays in the two phases. The result for 

phase 1 is 

_ Gtbs [ 
flit(l) u(kl + 1) 2rl COS 01 log rl, 

-- (B +A)r2 cos 02 logr2 

f 
+ 2Ac [ 2 log r2 -- cos 202 + 2cCOS 02 

( r2 ] 

+ (B--A)r2 02 sin 02] 
] 

(24) 

and for phase 2, 

2(B - A ) c  log rl - (B -A)r101 sin 01 ] 
(25) 

As mentioned earlier, the stress field and the dis. 
displacement field around the dislocation in the 
two phases can be obtained. Again, the results 
agree with those obtained by the Green's function 
technique [6] and the image dislocation method 
[7, 8]. The complete expressions for stresses and 
displacement fields are lengthy and therefore will 
not be included here. When the second phase 
consists of a vacuum, G2 = 0 and the constants A 
and B become unity; there will then be only two 
surface arrays which correspond to those in the 
semi-infinite medium [10]. When the second 
phase is rigid, A = - l / k ~  and B = - k l .  These 
values can be substituted in the above equations to 
arrive at the results for the limiting situation. 
When the two phases possess the same elastic 
properties, A and B become zero and the above 
equations for the Airy stress functions become 
those for the infinite homogeneous medium. 

5. Results and discussion 
The dislocation distributions and the stress fields 
obtained earlier indicate that the surface disloca- 
tion model can be used to solve the boundary 
conditions in two-phase media. Here the surface 
arrays in each medium contribute to the stress 
field and the displacement field only for the 
medium in which they are present. It is thus useful 
to see the effect of these surface arrays on the 
stress field of the dislocation. Fig. 6 shows the axz 
component of the stress field of a screw disloca- 
tion in a two-phase medium where the second 
phase has a lower shear modulus than phase 1. It is 
seen that the stress is continuous across the inter- 
face. Fig. 7 shows the stress field when the shear 
modulus of the second phase is larger than that of 
phase 1. Comparison of these two figures illustrates 
that the second phase with higher shear modulus 
increases the stress in the body while the second 
phase with lower shear modulus decreases the 
stress in the body. It is seen from Equation 9 that 
the surface array in phase 1 is of the same sign as 
that of the lattice dislocation at (c, 0) when G2 > G1 
and it is with opposite sign when G2 <G1.  It 
becomes obvious from Equations 6 and 7 that the 
surface array in phase 1 brings an additional term 
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Figure 6 The Oxz componen t  o f  
stress in uni ts  of  G1/27r(1--v) 
plot ted to show the  various stress 
levels of  a screw dislocation. The  
posi t ion of  the  screw dislocation is 
shown l~y a plus on the  x axis. The  
do t ted  lines indicate the  negative 
value of  stress and the  cont inuous  
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stress level, the  stress levels cor- 
respond to 1 X 10 -2 , 5 X 10 -5 and 
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positive and negative values. Stress 
contours  crossing the  interface 
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the  two phases as indicated on the  
figure. The  stress levels are obtained 
as indicated in Fig, 6. Stress con- 
tours  crossing the  interface depart  
f rom circularity by  amoun t s  too 
small to be seen. 
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to the stress field of the dislocation in order to 
match it with that in the second phase. When the 
second phase is a vacuum, the stress field in the 
second phase is zero and hence the second term in 
Equation 6 decreases the stress field of the disloca- 
tion at the surface to zero. Therefore, the effect of 
the surface arrays is to make the stress fields at the 
internal surfaces equal on both sides, and of a 
magnitude which decreases with decreasing values 
of G2/G1, down to zero for G2/G1 = 0. In the 
image dislocation model, the stress field of the 
image dislocations serve the purpose of matching 
the stress components in the two phases. 

The stress fields of the edge dislocation with 
burgers vector perpendicular to the interface and 
parallel to the interface are more complex due to 
Poisson's ratio effects which appear in the 
expressions for the stress and displacement fields. 
The crxx component of stress is plotted in Figs. 8, 9 
and 10 for three specific situations, namely when 
G2 <G1, G2 >G1 and G2 =G1 butp2 < v l . I t i s  
seen from these figures that the stress field 
becomes symmetric with respect to x but 
asymmetric with respect to the y axis situated at 
the centre of the dislocation, when G2 >G1,  the 
stress fields in medium 2 and medium 1 increase in 
order to match across the interface. The constants 
A and B become negative so that in Equations 16 

and 17 for the Airy stress functions, the logarthmic 
terms which are the main contributions to the 
stress become larger, thus increasing the stress in 
either phase. When G2 <G1 and v2 =Ux the 
opposite becomes true. It is seen from Equations 
16 and 17 that the asymmetry in the stress field 

arises due to the stress fields of the surface arrays. 
When G2 = 0, A = B = 1 and X 2 given by Equa- 
tion 17 becomes zero and the stress vanishes out- 
side the free surface. When v2 <v l  but G2 = G1, 
A = 0 and B is positive so that the logarithmic 
terms in Equations 16 and 17 become smaller thus 
decreasing the stress field due to the dislocation in 
either phase. The surface arrays which are placed 
in either phase bring the stress fields on the 
surfaces to the required value. It is important to 
note that in the formulation of the problem, the 
distortion in phase 1 is due to the arrays in phase 1 
and the lattice dislocation and that in phase 2 is 
due to the arrays in phase 2. In this respect, the 
surface arrays are different from the interface dis- 
locations which have distortions in both the phases. 
The Oxs component of the stress in the two phases 
is shown in Fig. 11 when G2 <G1 and v2 = v 1 . It 
is seen that the stress in the second phase is 
decreased and therefore the surface array in phase 
1 reduces the stress in that phase, when the second 
phase is a vacuum, the stress in the second phase 
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Figure 11 The axy component of  the stress field of an edge dislocation with Burgers vector perpendicular to the inter- 
face. The stress levels are as indicated in Fig. 6. The position of the dislocation is given along the x axis. 

s lope o f  the stress contours is different,  indicating 

that t h e  derivative o f  the stress f ield need  not  be 

cont inuous .  
It is instructive at this po int  to show in a some-  

what  more  physical  w a y  the manner in w h i c h  the 
surface dis locat ion arrays bring about  the accom- 

m o d a t i o n  o f  the two-phase  interface.  In particular, 

\ 

)\\\\\ • •177 

PHASE 

Fig. 12 shows a crystal lattice dis locat ion situated 

near the two.phase  interface in a s crystal w i th  
Burgers vector normal  to the interface,  w h i c h  is 

1 

ASE 2 

Figure 12 Schematic illustration of 
an edge dislocation in a finite two- 
phase medium with Burgers vector 
perpendicular to the interface. The 
two phases are depicted in terms of 
a common lattice where the surface 
dislocations consist of extra half 
planes. The lattice dislocation in 
phase 1 is shown to be spread out 
and consisting of a large Burgers 
vector in order to magnify the dis- 
tortion present in the two phases. 
The interface is shown dotted and 
with a large kink, also magnified, to 
illustrate the distortion. The surface 
dislocations axe in fact located 
exactly on the interface, although 
for clarity shown schematically 
somewhat removed. The surface 
arrays required to satisfy the free 
surface boundary conditions are 
also slTown to the far left and right 
side for each phase. The steps on 
the free surface indicate the change 
in the shape of  the surface due to 
relaxation brought about by the 
surface array. 
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drawn dotted. For clarity, the Burgers vectors of 
all dislocations have been normalized to the same 
value. In particular, the crystal lattice dislocation 
is seen to be of strength eighteen, i.e. there are 
eighteen extra half planes associated with this dis- 
location. It is further assumed that the two phases 
possess the same lattice parameter. This simplifies 
the figure in that no additional dislocations need 
be considered due to a lattice parameter difference. 
It is seen that the harder second phase toward the 
right of  the interface deforms, i.e. bends less than 
that of the phase to the left of the interface as 
indicated by the smaller inclination of the lattice 
planes. A set of two surface dislocation arrays, i.e. 
a total of six dislocations, are seen to be required 
at the interface to provide continuity between the 
two phases. Two other arrays with Burgers vector 
parallel to the interface are also required but their 
contribution is of second order and so as to 
simplify the figure, they have been omitted. The 
distortions across the interface have also been 
magnified in order to show their effects more 
clearly. Since the two-phase body in Fig. 12 is 
ffmite, surface tractions exist in both the right- and 
left-most vertical faces. These surface tractions can 
be removed by the addition of a set of surface 
dislocations in much the same way as they served 
to satisfy the boundary conditions at the two-phase 
interface. Again for simplicity, a second set of 
surface dislocations with Burgers vector parallel to 
the free surface have been omitted since they are 
of secondary importance. A detailed discussion of 
the nature of these surface arrays and their effect 
on the shape of the surface has been given 
elsewhere [10]. They, in fact, represent a special 
case of the present problem in which one of the 
phases consists of a vacuum. It will be noted that 
the right-hand face contains three surface disloca- 
tions whereas the left-hand face is comprised of 
nine such dislocations. It is also to be observed 
that a powerful conservation law is to be followed 
here, namely that the sum of the Burgers vectors 
of the surface and crystal dislocations should add 
up to zero. This is clearly seen in Fig. 12 where the 
crystal lattice dislocations of strength eighteen is 
just balanced by the eighteen surface dislocations 
which have Burgers vectors of opposite sign. In 
terms of elastic properties, the second phase 
towards the right of the dotted line in Fig. 12 is 
harder than phase 1 and assuming vz = vl,  B and 
A in Equation 15 become negative with B >A,  
which accounts for the fact that the Burgers 
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vectors of the surface arrays are of opposite sign to 
that of the lattice dislocation. It follows that in 
the present analysis, since the two half spaces 
associated with the two phases are semi-infinite, 
the free surface dislocation arrays need not be 
considered. The above physical interpretation of 
the surface dislocation model for a dislocation 
near a two-phase interface is useful in employing 
numerical techniques where the surface arrays are 
assumed to be discrete dislocations. Such discrete 
dislocation analysis, although not performed here 
for the finite two.phases system, gave results 
which are close to those obtained by the continu- 
ous distribution method in the case of a semi- 
infinite solid containing a dislocation [10]. 

It is interesting to observe the shape of the 
interface when the dislocation comes closer to the 
interface. This is obtained by plotting the Ux 
component of displacement, as shown in Figs. 
13a and b for two values of the shear modulus of 
the second phase. When G2 < G I ,  the shape of the 
surface is similar to that of a ledge formed on the 
free surface of a body when the dislocation comes 
close to the surface. Fig. 13a shows the shape of 
the interface when the dislocation approaches the 
interface. The shape of the interface shown in Fig. 
13b when G2 >G1 is different in that the inter- 
face changes the sign of its curvature as one 
moves away from the dislocation in the y direction. 
The difference in the variation of Ux for the two 
situations illustrated in Figs. 13a and b is difficult 
to explain physically. The displacement com- 
ponent is obtained from the two dislocation 
distributions in each phase with an additional 
contribution to the displacement in phase 1 from 
the lattice dislocation in phase 1. It has been 
found that the distribution function representing 
the surface dislocations with Burgers vector 
parallel to the interface in phase 1 changes sign 
once along one half of the y axis. It is also noted 
that this distribution is an odd function of y. 
Thus, the distribution changes sign three times 
along the y axis. This variation of the distribution 
function with proper combination of the shear 
moduli G2 >G1 is expected to give the Ux 
component of displacement shown in Fig. 13b. 

The ox~ and oxy components of the stress field 
of a dislocation with Burgers vector parallel to the 
interface are plotted in Figs. 14 and 15 respectively 
when the second phase has a lower shear modulus 
than that of the phase 1. It is seen from these 
figures that the stress field is reduced by the 
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second phase. In the limiting situation when the 
second phase is a vacuum, the stress contours close 
up along the free surface. The stress field is 
continuous but  the derivative of  the stress is not  
continuous,  as indicated by  the change of  slope of  
the curves. The general conclusions regarding the 
effect of  the elastic propert ies of  the second phase 
on the stress plots remains the same as those 
observed for a dislocation with Burgers vector 
perpendicular to the interface. Therefore, the 
stress plots for situations when G2 >G1  and G= = 
G1 and v2 < v t  are not  shown separately. When 

the second phase is rigid compared to the matr ix,  
the stress levels approach a limiting value indicating 

that  it is the highest value possible everywhere for 
the combinat ion o f  the two phases. 

The distort ion across the interface due to a 
dislocation with Burgers vector parallel to the 
interface is shown in Fig. 16 indicating the surface 
dislocation arrays in the two phases. The crystal 
lattice dislocation is situated in the lower half  
space where the interface is shown by a dot ted  line. 
Similar to the case of  Fig. 12, only the primary 
array of  dislocations in the surface arrays are 
shown everywhere. It is seen from Fig. 16 that the 
harder  phase which is below the dot ted  line bends 
less than that  of  the second phase above the inter- 
face as indicated by the smaller inclination of  the 
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Figure 16 Schematic illustration of an edge dislocation in 
a finite two-phase medium with Burgers vector parallel to 
the interface. The two phases are shown in terms of a 
common lattice where the surface dislocations consist of 
extra half planes. The lattice dislocation in phase 1 is 
shown to be spread out and consisting of a large Burgers 
vector in order to magnify the distortion present in the 
two phases. The severe distortion due to the dislocation 
enters phase 2. The interface is .shown dotted without a 
kink or bend in order to avoid the presence of other dis- 
locations and thus avoid confusion. The surface disloca- 
tions are present exactly at the interface, although for 
clarity they are shown somewhat removed. The surface 
arrays required to satisfy the free surface boundary 
conditions are also shown on far left and right sides for 
each phase. The steps on the free surface indicate the 
change in the shape of the surface due to relaxation 
brought about by the surface array. 

lattice planes. A detailed discussion of Fig. 16 
follows the same reasoning as that for Fig. 12 and 
hence it is not included here. Fig. 16 forms the 
basis for the discrete dislocation model of a 
dislocation with Burgers vector parallel to the 
interface which can be analysed numerically. 

The surface dislocation model of interface 
boundary conditions shows that this method can 
be applied to the two-phase systems without 
having to solve the basic elasticity equations 
needed to satisfy the continuity conditions. Thus, 
the method is relatively simple and involves no 
mathematical complexity. The surface arrays also 
indicate as shown in Figs. 12 and 16, the distor- 
tion across the interface in both the phases. Since, 
each array in the interface belongs to only one 

medium in which it is present, the two phases can 
be separated and the distortion is completely 
accounted for by the arrays. The other two 
methods, hitherto used in the literature to satisfy 
the interface boundary conditions, namely the 
Green's function method and the image disloca- 
tion model, do not have the above-mentioned 
advantage. Also, when the two-phase medium is 
finite in size, the free surface boundary conditions 
should also be satisfied in addition to the internal 
surface boundary conditions. While the surface 
dislocation model may be employed using the 
discrete dislocation approach [10], the other two 
methods cannot be used as effectively as the 
present model to deal with the additional 
boundary conditions. 

6. Discrete dislocation method 
The surface dislocation model is employed to solve 
the continuity conditions across the interface 
using the continuous dislocation distribution 
method. The dislocation distribution is further 
used to arrive at the Airy stress functions in the 
two media. When the interface possesses a 
complex geometry and the two-phase medium is 
finite, the method of continuous distribution of 
dislocations may also be cumbersome due to 
complex integral equations which should be 
inverted to obtain the distribution functions. In 
those cases where the analysis becomes difficult, it 
has been shown that the discrete dislocation 
method can be used very efficiently [10]. In this 
method of analysis, the continuous distribution is 
replaced by discrete dislocations and instead of 
using the stress fields and the displacement fields, 
the total energy of the configuration is minimized 
with respect to the positions of the discrete dis- 
locations. It has been shown that the discrete 
dislocation method can be used to satisfy the 
boundary conditions to any accuracy required by 
choosing the required number of dislocations. 
However, this method can be applied only to those 
situations where the energy of the configuration is 
not int-mite, i.e., it can only be applied where the 
stress field of the configuration is short range*. In 
the present analysis where the stress field of the 
dislocation in the two-phase medium composed of 
two semi-inf'mite half spaces is long range, this 
method cannot be applied since the energy of the 
configuration is also infinite. But the method 

* The authors have subsequently applied the discrete dislocation method to two-phase systems [ 14 ]. 
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becomes useful when the two-phase medium is 
finite in dimensions [14]. 

7. S u m m a w  and conclusions 
The surface dislocation model has been utilized to 
satisify the continuity conditions across the planar 
interface of  a two-phase medium composed of  two 
semi-infmite half spaces containing a dislocation in 
one of the phases. The three fundamental orienta- 
tions of  the Burgers vectors of the dislocations are 
considered and analysed completely to obtain the 
stress field and the displacement field in the two 
media. The stress fields are plotted for the three 
orientations to show the effect of the shear 
modulus of the second phase on the variation of 
the stress in the two-phase region. It is shown that 
a second phase with lower shear modulus reduces 
the stress field, while the opposite is true when the 
second phase has higher shear modulus. In the 
extreme situation when the second phase is a 
vacuum, the stress levels close along the free 
surface. Also, the stress reaches a maximum level 
everywhere when the second phase is very rigid. 
The effect of decreasing Poisson's ratio is the same 
as decreasing the shear modulus, although the two 
have different magnitude effects on the stress field. 
Tile distortion across the interface that arises due 
to the dislocation is shown in the two specific 
situations where the Burgers vector is either 
perpendicular to the interface or parallel to it. The 
advantages of  the surface dislocation model over 
the other two methods, namely, its simplicity of 
analysis and its ability to solve complex problems 
with relative ease, are discussed. The surface arrays 
across the interface are shown to indicate the 
distortion across the interface of the two phases. 
The surface arrays are different from the interface 
array since the distortion due to the surface 
dislocations exists only in the medium in which 

they are present while the distortion due to the 
interface array is present in both phases. The 
advantages of the surface dislocation model in 
applying the discrete dislocation method to the 
finite two-phase medium with curved interfaces is 
mentioned and its limitations for the long range 
stress problems are also indicated. 
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